帖子主题: 走进中考学数学——构造等腰三角形的常用方法(四)  

论坛级别: 大学本科生
学术等级: 童生
发帖:1005
经验:979
鲜花:17
勋章:9
离线
发表于:2011-03-30 10:27:04
如图,已知等腰Rt△ABC中,ABAC,∠BAC90°,BF平分∠ABCCDBDBF的延长线于D.求证:BF2CD
 
论坛级别: 大学本科生
学术等级: 童生
发帖:1804
经验:1687
鲜花:2
勋章:1
离线
发表于:2011-04-01 10:54:52
倒计时开始,还有最后三天
论坛级别: 高中生
学术等级: 童生
发帖:379
经验:143
鲜花:6
勋章:1
离线
发表于:2011-04-08 17:49:01
怎么了都?太打击版主的积极性了

hope is a good thing, maybe the best of things, and no good thing ever dies.
论坛级别: 高中生
学术等级: 童生
发帖:379
经验:143
鲜花:6
勋章:1
离线
发表于:2011-04-08 17:49:49

hope is a good thing, maybe the best of things, and no good thing ever dies.
论坛级别: 高中生
学术等级: 童生
发帖:379
经验:143
鲜花:6
勋章:1
离线
发表于:2011-04-14 15:52:58

hope is a good thing, maybe the best of things, and no good thing ever dies.
论坛级别: 大学本科生
学术等级: 童生
发帖:1005
经验:979
鲜花:17
勋章:9
离线
发表于:2011-04-21 14:00:07
BF平分∠ABCCDBD,并在图5的揭示之下,延长线BACD交于点E,于是△BCE是等腰三角形,并有EDCD,余下来的问题只需证明BFCE,而事实上,由∠BAC90°,CDBD,∠AFB=∠DFC,得∠ABF=∠DCF,而ABAC,所以△ABF≌△ACE,则BFCE,故BF2CD
快速回复主题

走进中考学数学——构造等腰三角形的常用方法(四)


    您尚未登录,发表回复前请先登录,或者 注册
  Ctrl+Enter直接发表